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1.1 BACKGROUND OF FFDM

For over a century, the limit equilibrium method (LEM) has been a fundamental
approach in engineering analyses and design for soil structures. Slope stability
assessments using LEM are traditionally expressed through the safety factor (Fj),
defined as the ratio of shear strength to shear stress along the slip surface. While Fi has
long been used as an indicator of slope stability, it presents inherent limitations that

hinder comprehensive analysis and design:

1. Displacements of the slope remain unknown.
2. The definition of F; relies on the assumption of a single, uniform F§ along the

slip surface.

Consequently, F; serves as a semi-quantitative rather than a strictly quantitative
indicator, making slope stability assessments less straightforward and heavily reliant

on empirical judgment.

To address these limitations, Huang (2013) developed the Force-equilibrium-
based Finite Displacement Method (FFDM), modifying classical LEM approaches—
including those by Fellenius, Bishop, Janbu, Spencer, and the multi-wedge method—

to incorporate a more comprehensive analytical framework.

Footsteps of FFDM

The development of the Force-Equilibrium-Based Finite Displacement Method (FFDM)
has progressed through a series of peer-reviewed studies, each contributing to its

formulation, validation, and extension to various geotechnical scenarios:

1. Huang, C.-C. (2013) Developing a new slice method for slope displacement
analyses, Engineering Geology, 157, 39—-47.

— This study introduced the original formulation of FFDM using Janbu’s slice

method and verified its applicability through a landslide case study.

2. Huang, C.-C. (2014) Force-equilibrium-based finite displacement analyses for
reinforced slopes: Formulation and verification, Geotextiles and
Geomembranes, 42, 394-404.
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— FFDM was first applied to reinforced slopes. Unlike conventional methods
where reinforcement force is an input and displacement is unknown, FFDM

outputs both slope displacement and mobilized reinforcement force.

3. Huang, C.-C. and Yeh, S.-W. (2015) Predicting periodic rainfall-induced
slope displacements using force-equilibrium-based finite displacement method,
Journal of GeoEngineering, 10(3), 83—89.

— Bishop’s method was incorporated into FFDM to analyze a landslide in
central Taiwan. The study demonstrated that soil parameters back-calculated
from an initial displacement event could be used to predict long-term slope

movements.

4. Huang, C.-C. (2016) Back-calculating strength parameters and predicting
displacements of deep-seated sliding surface comprising weathered rocks,

International Journal of Rock Mechanics and Mining Sciences, 88, 98—104.

— This work verified FFDM’s versatility in using different failure criteria,
including Mohr-Coulomb and Hoek-Brown. It proved FFDM effective for

back-calculating strength and deformation characteristics of slope materials.

5. Lo, C.-L. and Huang, C.-C. (2021) Displacement analyses for a natural slope
considering post-peak strength of soils, GeoHazards, 2, 41-62.
https://doi.org/10.3390/geohazards2020003 — Introduced a post-peak soil
strength model using the “Versoria” curve (also known as the witch of Agnesi),
originally developed in Chiang (2017). Combined with hyperbolic pre-peak
stress-displacement relationships, this model provided deeper insight into

landslide failure processes.

6. Lo, C.-L. and Huang, C.-C. (2021) Groundwater-table-induced slope
displacement analyses using different failure criteria, Transportation
Geotechnics, 26, 100444. https://doi.org/10.1016/j.trgeo.2020.100444

— Verified FFDM’s predictive capability using back-calculated parameters
from groundwater-induced slope movements. Demonstrated FFDM’s
applicability to both soil and rock slopes using Mohr-Coulomb and Hoek-

Brown criteria.
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This report, FFDM Software Development Series 1, outlines the key features,
advantages, and limitations of FFDM. Additionally, three fundamental components
forming the FFDM framework are introduced in Sections 1.4 to 1.6:

1. Stress-displacement constitutive law of soils
2. Force and moment equilibria for the entire sliding mass

3. Displacement compatibility of the sliding soil mass
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1.2 ADVANTAGES OF FFDM

To evaluate the stability and displacement of natural and engineered slopes, the
Force-equilibrium-based Finite Displacement Method (FFDM) offers distinct

advantages over traditional stability analysis methods:

1. Displacement Indicators — FFDM provides both vertical settlement at the crest and
shear displacements along the critical failure surface, offering a displacement-based
indicator essential for slope stability assessment.

2. Localized Safety Factors — Instead of a single lumped safety factor for the entire
slip surface, FFDM calculates local displacement-based and stress-based safety
factors along the failure surface, enhancing analytical precision.

3. Computational Efficiency — FFDM computes slope displacements with minimal
additional time and effort compared to conventional slope stability analysis methods.
The computer time for analyzing slope displacements using non-linear (hyperbolic)
stress-displacement relationships is comparable to that of traditional limit
equilibrium calculations for a constant safety factor.

4. Shear Stress-Displacement Modeling — FFDM employs a shear stress-
displacement relationship akin to that in the discrete element method (DEM), where
stress-displacement relationships determine normal and shear spring constants under
small displacement conditions. However, FFDM extends this capability to account
for larger shear displacements.

5. Incremental & Cumulative Displacements — FFDM incorporates the concept of
incremental and cumulative slope displacements, enabling analysis between
different internal or external loading states.

6. Application to Reinforced (or nailed) and Pre-stress Anchored Slopes — FFDM
is suitable for both unreinforced and reinforced slopes. For reinforced and nailed
slopes, the mobilized reinforcement (or nailing) force is included in the analytical

output, unlike conventional LEM-based methods.
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1.3 LIMITATIONS AND ADDITIONAL REQUIREMENTS IN FFDM:

1. Prescribed Failure Surfaces — As in conventional LEM analyses, FFDM requires
predefined potential failure surfaces, which may take the form of straight lines, bi-
linear wedges, multi-wedges, circles, logarithmic spirals, or combinations of these.
In SLOPE-ffdm 2.0, all of the above-mentioned failure surfaces can be analyzed,
and the critical surface associated with maximum slope displacement can be
identified through a trial-and-error process.

2. Additional Soil Parameters — FFDM computes slope displacements using the
hyperbolic stress-displacement constitutive law, requiring three additional input
soil parameters:

o Initial shear stiffness number (K)

o Stress-dependency exponent ()

o Peak-to-asymptote strength ratio (Ry)

3. To account for the post-peak strength deterioration of soils in slope displacement

analysis, two additional soil parameters are required:

o Residual friction angle of soil (@ res)
e Residual-to-peak displacement ratio (4 asio)

Studies aimed at establishing a database for these parameters have been conducted
through calibration of slope displacements using field monitoring, direct shear tests,

and empirical equations.
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1.4 STRESS-DISPLACEMENT CONSTITUTIVE LAW

A hyperbolic equation is employed to model the relationship between normalized
shear stress (7/77) and shear displacement (4) along the potential failure surface, as
illustrated in Figure 1.4.1. This formulation is based on Duncan and Chang (1970) and
Huang (2013):

r__A (1-4—-1)
Tf_a+bA
Where:

T

a=—7 (1-4-2)
kinitial

b =R, (1-4-3)
123

Ry =L (1—4—4)
ult

Parameter Definitions

kinitiarz Initial shear stiffness of soils

Tui: Asymptote strength at infinite displacement

77.: Shear strength of soil according to the Mohr-Coulomb failure criterion

Ry Asymptote strength ratio (= 7/ tur)

’Cf/Rf __________________

T

Hyperbola

>
A A

Figure 1.4.1 A hyperbolic normalized stress and shear displacement relationship
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The shear strength of soils ( 7y) is defined by the Mohr-Coulomb failure criterion:
T = ¢ + 0oy * tang (1-4-5)

0. : Effective normal stress
c: Cohesion intercept

@: Internal friction angle of soils

Equation (1-4-1) can be viewed as a reciprocal formulation of the local safety
factor Fs at the base of a slice (or wedge) - structurally inverted with respect to Eq. (1-
4-6).

T
F:g:?f 1-4-6)

The initial shear stiffness kinirias 1 given as a power function of effective normal

pressure, per Duncan and Chang (1970):

o \"
kinitim = K- G <P_n> 1-4-7)

a

K: initial shear stiffness number (dimensionless)

P.: atmospheric pressure (= 101.3 kPa)

G: reference shear stiffness (= 101.3 kPa/m)

e n: pressure dependency exponent

Validation and Application

Equations (1-4-1) through (1-4-7) have been validated across multiple soil types
using medium- to large-scale direct shear tests. A curve-fitting methodology was
employed to establish empirical consistency. Full details will be discussed in the FFDM

Software Development Series 10: Modelling material behavior.
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About Post-Peak Behavior of Soils

A novel modeling approach leverages a classical mathematical curve known as the
Versoria—also referred to as the Witch of Agnesi—originally proposed by Grandi in
the 1700s. This curve provides a promising framework for simulating the post-peak
strength degradation of soils. The theoretical foundation and simulation results are
detailed in Series 11: Modelling Post-Peak Behavior of Soils.

1.5 Force and Moment Equilibria in Slope Stability Analysis

This section provides a brief overview of force and moment equilibria considered
in various types of analyses. Detailed formulations will be presented in an upcoming
series of reports. In slope stability formulations for a potential sliding mass with slices,

three types of force and moment equilibrium are adopted:

1. Circular Failure Surface — As shown in Fig. 1.5.1, methods such as Fellenius’
method (Fellenius, 1936) and Bishop’s method (Bishop, 1955) belong to this
category. These approaches formulate vertical force equilibrium (or equilibrium
normal to the slice base) and overall moment equilibrium for the circular sliding

mass.

Slice 1

Slice ns

Fig. 1.5.1 A potential failure mass confined by a circular failure surface
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2. Non-Circular Failure Surface — As shown in Fig. 1.5.2, the rigorous Janbu’s
method (Janbu, 1973) and Spencer’s method (Spencer, 1973) fall into this
category. These methods establish force equilibrium in both vertical and
horizontal directions and moment equilibrium for each slice within the sliding
mass. In the simplified Janbu’s method, however, only vertical and horizontal

force equilibria are formulated.

Xo
Slice i l
\ Eo
4—
Wi
l Slice 1
X, / Slice i

Fig. 1.5.2 Body and reactional forces in a sliced non-circular failure mass
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3. Wedge-Like Failure Surface — As shown in Fig. 1.5.3, the Multi-wedge
method (Huang et al., 2003) and the simplified Janbu’s method belong to this
category. These methods formulate only force equilibrium in vertical and

horizontal directions, without explicitly considering moment equilibrium.

Wedge 3 Tension crack .

l

Facing blocks Wedge 1

Wedge 4

(Passive zone) Wedge 2

Fig. 1.5.3 Schematic wedge-like failure mass

FFDM Development Series 1 11 2025-09-03



1.6 DISPLACEMENT COMPATIBILITY

A hodograph (displacement diagram) that satisfies displacement compatibility - as
schematically illustrated in Figure 1.6.1 - is derived following Atkinson (1981). The

shear displacement between adjacent slices (or wedges) is recursively governed by:

cos(a; —2y) Ay cos(a; — 2y)

cosQy—a,) sin(a; — v) : oS (Zv =) (1-6-1)

Azz Al

Where:
v : Angle of the dilatancy of soils.

For general cases where i > 2, the displacement at slice i can be expressed as:

cos(@;_1 — 2y)
cosQy— a;)

A=A

A cos(a; —2y) cos(a, — 2y)

sin(a; — ) . cosQy — ay) . cos(Qy — ag)

cos(a;_1 — 2y)
. cosQy— a;)

1-6-2)

Notably, the following identity holds due to symmetry of the cosine function:
cosQy— a,) = cos(a, — 2y) 1-6-3)
Thus, the general displacement expression can be condensed as:
A=A - f(ay) (1-6-4)
Where:

1 cos(a; —2y)

sin(a; — ) cosQRw— a;) (1-6-15)

fla) =

This formulation maintains displacement compatibility across soil interfaces and

forms the basis for kinematic analysis of the sliding block system.
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(b)

Ani

Figure 1.6.2 A constant-volume (#=0) sliding mass with (a) Displacement vectors

at the base of slice; (b) Hodograph of the sliding mass

Figure 1.6.2(a) schematically illustrates a constant-volume state of the sliding
mass, defined by a dilation angle of ¥ = 0. Under this condition, the shear displacement
vector at the base of each slice is oriented parallel to the slice base. The corresponding
hodograph for the ¥ = 0 case is shown in Figure 1.6.2(b), revealing a uniform horizontal

displacement component across all slices.
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Figure 1.6.3 A constant-volume (¥ >0) sliding mass with (a) Displacement vectors

at the base of slice; (b) Hodograph of the sliding mass

Figure 1.6.3(a) schematically illustrates a dilative state of the sliding mass,
characterized by a dilation angle ¥ > 0. In this condition, the shear displacement vector
at the base of each slice forms an angle ¥ with the slice base. Figure 1.6.3(b) presents
a corresponding hodograph for the ¥ > () case. It reveals that shear displacements along
the potential sliding surface progressively increase toward the toe of the slope when

dilation is present.
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Figure 1.6.4 A constant-volume (< 0) sliding mass with (a) Displacement vectors

at the base of slice; (b) Hodograph of the sliding mass

Figure 1.6.4(a) schematically shows the case of dilation (or expansion) of the
sliding mass, namely ?< 0, the vector of shear displacement at the base of the slice has
an angle of dilation (%) with the base of slice. A hodograph for the case of ¥< 0 is
shown in Fig. 1.6.4(b).
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1.7 DISPLACEMENT INCREMENT

To evaluate slope displacements resulting from changes in external or internal
conditions—such as loading, variations in the water table, or pore water pressure—two

displacement values for each slice (4;) are calculated: one representing the state prior
to the event (A‘;) and the other representing the state afterward (All’) . The

displacement increments for slice i, induced by the change in stress conditions, is

schematically illustrated in Figure 1.7.1 and defined as:

A= AP — AG 1-7-1)

Rainfall-induced stress path

For higher o,

-~ For lower o,

|
|
|
|
|
|
' | -
b
A A A

Fig. 1.7.1 Possible shear stress and displacement increases induced by a

coupled shear and confining stress increases
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