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1.1 BACKGROUND OF FFDM 

For over a century, the limit equilibrium method (LEM) has been a fundamental 

approach in engineering analyses and design for soil structures. Slope stability 

assessments using LEM are traditionally expressed through the safety factor (Fs), 

defined as the ratio of shear strength to shear stress along the slip surface. While Fs has 

long been used as an indicator of slope stability, it presents inherent limitations that 

hinder comprehensive analysis and design: 

1. Displacements of the slope remain unknown. 

2. The definition of Fs relies on the assumption of a single, uniform Fs along the 

slip surface. 

Consequently, Fs serves as a semi-quantitative rather than a strictly quantitative 

indicator, making slope stability assessments less straightforward and heavily reliant 

on empirical judgment. 

To address these limitations, Huang (2013) developed the Force-equilibrium-

based Finite Displacement Method (FFDM), modifying classical LEM approaches—

including those by Fellenius, Bishop, Janbu, Spencer, and the multi-wedge method—

to incorporate a more comprehensive analytical framework. 

Footsteps of FFDM 

The development of the Force-Equilibrium-Based Finite Displacement Method (FFDM) 

has progressed through a series of peer-reviewed studies, each contributing to its 

formulation, validation, and extension to various geotechnical scenarios: 

1. Huang, C.-C. (2013) Developing a new slice method for slope displacement 

analyses, Engineering Geology, 157, 39–47.  

— This study introduced the original formulation of FFDM using Janbu’s slice 

method and verified its applicability through a landslide case study. 

2. Huang, C.-C. (2014) Force-equilibrium-based finite displacement analyses for 

reinforced slopes: Formulation and verification, Geotextiles and 

Geomembranes, 42, 394–404.  
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— FFDM was first applied to reinforced slopes. Unlike conventional methods 

where reinforcement force is an input and displacement is unknown, FFDM 

outputs both slope displacement and mobilized reinforcement force. 

3. Huang, C.-C. and Yeh, S.-W. (2015) Predicting periodic rainfall-induced 

slope displacements using force-equilibrium-based finite displacement method, 

Journal of GeoEngineering, 10(3), 83–89.  

— Bishop’s method was incorporated into FFDM to analyze a landslide in 

central Taiwan. The study demonstrated that soil parameters back-calculated 

from an initial displacement event could be used to predict long-term slope 

movements. 

4. Huang, C.-C. (2016) Back-calculating strength parameters and predicting 

displacements of deep-seated sliding surface comprising weathered rocks, 

International Journal of Rock Mechanics and Mining Sciences, 88, 98–104.  

— This work verified FFDM’s versatility in using different failure criteria, 

including Mohr-Coulomb and Hoek-Brown. It proved FFDM effective for 

back-calculating strength and deformation characteristics of slope materials. 

5. Lo, C.-L. and Huang, C.-C. (2021) Displacement analyses for a natural slope 

considering post-peak strength of soils, GeoHazards, 2, 41–62. 

https://doi.org/10.3390/geohazards2020003 — Introduced a post-peak soil 

strength model using the “Versoria” curve (also known as the witch of Agnesi), 

originally developed in Chiang (2017). Combined with hyperbolic pre-peak 

stress-displacement relationships, this model provided deeper insight into 

landslide failure processes. 

 

6. Lo, C.-L. and Huang, C.-C. (2021) Groundwater-table-induced slope 

displacement analyses using different failure criteria, Transportation 

Geotechnics, 26, 100444. https://doi.org/10.1016/j.trgeo.2020.100444  

— Verified FFDM’s predictive capability using back-calculated parameters 

from groundwater-induced slope movements. Demonstrated FFDM’s 

applicability to both soil and rock slopes using Mohr-Coulomb and Hoek-

Brown criteria. 

 



FFDM Development Series 1                       4                                2025-09-03 

 

This report, FFDM Software Development Series 1, outlines the key features, 

advantages, and limitations of FFDM. Additionally, three fundamental components 

forming the FFDM framework are introduced in Sections 1.4 to 1.6: 

1. Stress-displacement constitutive law of soils 

2. Force and moment equilibria for the entire sliding mass 

3. Displacement compatibility of the sliding soil mass 
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1.2 ADVANTAGES OF FFDM 

To evaluate the stability and displacement of natural and engineered slopes, the 

Force-equilibrium-based Finite Displacement Method (FFDM) offers distinct 

advantages over traditional stability analysis methods: 

1. Displacement Indicators – FFDM provides both vertical settlement at the crest and 

shear displacements along the critical failure surface, offering a displacement-based 

indicator essential for slope stability assessment. 

2. Localized Safety Factors – Instead of a single lumped safety factor for the entire 

slip surface, FFDM calculates local displacement-based and stress-based safety 

factors along the failure surface, enhancing analytical precision. 

3. Computational Efficiency – FFDM computes slope displacements with minimal 

additional time and effort compared to conventional slope stability analysis methods. 

The computer time for analyzing slope displacements using non-linear (hyperbolic) 

stress-displacement relationships is comparable to that of traditional limit 

equilibrium calculations for a constant safety factor. 

4. Shear Stress-Displacement Modeling – FFDM employs a shear stress-

displacement relationship akin to that in the discrete element method (DEM), where 

stress-displacement relationships determine normal and shear spring constants under 

small displacement conditions. However, FFDM extends this capability to account 

for larger shear displacements. 

5. Incremental & Cumulative Displacements – FFDM incorporates the concept of 

incremental and cumulative slope displacements, enabling analysis between 

different internal or external loading states. 

6. Application to Reinforced (or nailed) and Pre-stress Anchored Slopes – FFDM 

is suitable for both unreinforced and reinforced slopes. For reinforced and nailed 

slopes, the mobilized reinforcement (or nailing) force is included in the analytical 

output, unlike conventional LEM-based methods. 
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1.3 LIMITATIONS AND ADDITIONAL REQUIREMENTS IN FFDM: 

1. Prescribed Failure Surfaces – As in conventional LEM analyses, FFDM requires 

predefined potential failure surfaces, which may take the form of straight lines, bi-

linear wedges, multi-wedges, circles, logarithmic spirals, or combinations of these. 

In SLOPE-ffdm 2.0, all of the above-mentioned failure surfaces can be analyzed, 

and the critical surface associated with maximum slope displacement can be 

identified through a trial-and-error process. 

2. Additional Soil Parameters – FFDM computes slope displacements using the 

hyperbolic stress-displacement constitutive law, requiring three additional input 

soil parameters: 

o Initial shear stiffness number (K) 

o Stress-dependency exponent (n) 

o Peak-to-asymptote strength ratio (Rf) 

3. To account for the post-peak strength deterioration of soils in slope displacement 

analysis, two additional soil parameters are required: 

 Residual friction angle of soil ( res) 

 Residual-to-peak displacement ratio (Δratio) 

Studies aimed at establishing a database for these parameters have been conducted 

through calibration of slope displacements using field monitoring, direct shear tests, 

and empirical equations. 
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1.4 STRESS-DISPLACEMENT CONSTITUTIVE LAW 

A hyperbolic equation is employed to model the relationship between normalized 

shear stress (τ/τf) and shear displacement (Δ) along the potential failure surface, as 

illustrated in Figure 1.4.1. This formulation is based on Duncan and Chang (1970) and 

Huang (2013): 

 
𝜏

𝜏௙
=

∆

𝑎 + 𝑏 ∙ ∆
                                                                         (1 − 4 − 1) 

 

Where: 

𝑎 =
𝜏௙

𝑘௜௡௜௧௜௔௟
                                                                             (1 − 4 − 2) 

𝑏 = 𝑅௙                                                                                      (1 − 4 − 3) 

𝑅௙ =
𝜏௙

𝜏௨௟௧
                                                                                  (1 − 4 − 4) 

 

Parameter Definitions 

kinitial: Initial shear stiffness of soils 

τult: Asymptote strength at infinite displacement 

τf:: Shear strength of soil according to the Mohr-Coulomb failure criterion 

Rf: Asymptote strength ratio (= τf / τult) 

 

 

Figure 1.4.1   A hyperbolic normalized stress and shear displacement relationship 
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The shear strength of soils (τf) is defined by the Mohr-Coulomb failure criterion: 

 

𝜏௙ = 𝑐 + 𝜎௡
ᇱ ∙ tan𝜑                                                                       (1 − 4 − 5)  

 

σn
’: Effective normal stress 

c: Cohesion intercept 

φ: Internal friction angle of soils 

 

Equation (1-4-1) can be viewed as a reciprocal formulation of the local safety 

factor Fs at the base of a slice (or wedge) - structurally inverted with respect to Eq. (1-

4-6). 

𝐹௦ =
𝜏௙

𝜏
                                                                                    (1 − 4 − 6) 

 

The initial shear stiffness kinitial is given as a power function of effective normal 

pressure, per Duncan and Chang (1970): 

 

𝑘௜௡௜௧௜௔௟ = 𝐾 ∙ 𝐺 ቆ
𝜎ᇱ

௡

𝑃௔
ቇ

௡

                                                     (1 − 4 − 7) 

 

  K: initial shear stiffness number (dimensionless) 

  Pa: atmospheric pressure (= 101.3 kPa) 

  G: reference shear stiffness (= 101.3 kPa/m) 

  n: pressure dependency exponent 

Validation and Application  

Equations (1-4-1) through (1-4-7) have been validated across multiple soil types 

using medium- to large-scale direct shear tests. A curve-fitting methodology was 

employed to establish empirical consistency. Full details will be discussed in the FFDM 

Software Development Series 10: Modelling material behavior. 
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About Post-Peak Behavior of Soils 

A novel modeling approach leverages a classical mathematical curve known as the 

Versoria—also referred to as the Witch of Agnesi—originally proposed by Grandi in 

the 1700s. This curve provides a promising framework for simulating the post-peak 

strength degradation of soils. The theoretical foundation and simulation results are 

detailed in Series 11: Modelling Post-Peak Behavior of Soils. 

 

 

1.5 Force and Moment Equilibria in Slope Stability Analysis 
 This section provides a brief overview of force and moment equilibria considered 

in various types of analyses. Detailed formulations will be presented in an upcoming 

series of reports. In slope stability formulations for a potential sliding mass with slices, 

three types of force and moment equilibrium are adopted: 

1. Circular Failure Surface – As shown in Fig. 1.5.1, methods such as Fellenius’ 

method (Fellenius, 1936) and Bishop’s method (Bishop, 1955) belong to this 

category. These approaches formulate vertical force equilibrium (or equilibrium 

normal to the slice base) and overall moment equilibrium for the circular sliding 

mass. 

 

 

 
Fig. 1.5.1 A potential failure mass confined by a circular failure surface 
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2. Non-Circular Failure Surface – As shown in Fig. 1.5.2, the rigorous Janbu’s 

method (Janbu, 1973) and Spencer’s method (Spencer, 1973) fall into this 

category. These methods establish force equilibrium in both vertical and 

horizontal directions and moment equilibrium for each slice within the sliding 

mass. In the simplified Janbu’s method, however, only vertical and horizontal 

force equilibria are formulated. 

 

 

Fig. 1.5.2 Body and reactional forces in a sliced non-circular failure mass 
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3. Wedge-Like Failure Surface – As shown in Fig. 1.5.3, the Multi-wedge 

method (Huang et al., 2003) and the simplified Janbu’s method belong to this 

category. These methods formulate only force equilibrium in vertical and 

horizontal directions, without explicitly considering moment equilibrium. 

 

 

Fig. 1.5.3 Schematic wedge-like failure mass 
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1.6 DISPLACEMENT COMPATIBILITY  

A hodograph (displacement diagram) that satisfies displacement compatibility - as 

schematically illustrated in Figure 1.6.1 - is derived following Atkinson (1981). The 

shear displacement between adjacent slices (or wedges) is recursively governed by: 

 

∆ଶ= ∆ଵ ∙
cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
=

∆଴

sin(𝛼ଵ − )
 ∙   

cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
          (1 − 6 − 1) 

 

Where: 

 : Angle of the dilatancy of soils. 

 

For general cases where i > 2, the displacement at slice i can be expressed as: 

 

∆௜= ∆௜ିଵ ∙
cos(𝛼௜ିଵ − 2)

cos(2 − 𝛼௜)

=   
∆଴

sin(𝛼ଵ − )
 ∙   

cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
∙

cos(𝛼ଶ − 2)

cos(2 − 𝛼ଷ)
∙∙∙∙∙∙∙∙∙∙∙∙

∙
cos(𝛼௜ିଵ − 2)

cos(2 − 𝛼௜)
                                                        (1 − 6 − 2) 

 

Notably, the following identity holds due to symmetry of the cosine function:  

 

cos(2 − 𝛼ଶ) = cos(𝛼ଶ − 2)                                                         (1 − 6 − 3)   

        

Thus, the general displacement expression can be condensed as: 

 

∆௜= ∆଴ ∙ 𝑓(𝛼௜)                                                                                    (1 − 6 − 4) 

 

Where: 

𝑓(𝛼௜) =   
1

sin(𝛼ଵ − )
 ∙

cos(𝛼ଵ − 2)

cos(2 − 𝛼௜)
                                         (1 − 6 − 5) 

 

This formulation maintains displacement compatibility across soil interfaces and 

forms the basis for kinematic analysis of the sliding block system. 
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Fig. 1.6.1 Displacement compatibility of adjacent slices 

 

 

 

 

Figure 1.6.2 A constant-volume (Ψ=0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  

 

Figure 1.6.2(a) schematically illustrates a constant-volume state of the sliding 

mass, defined by a dilation angle of Ψ = 0. Under this condition, the shear displacement 

vector at the base of each slice is oriented parallel to the slice base. The corresponding 

hodograph for the Ψ = 0 case is shown in Figure 1.6.2(b), revealing a uniform horizontal 

displacement component across all slices. 
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Figure 1.6.3 A constant-volume (Ψ >0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  

 

 

Figure 1.6.3(a) schematically illustrates a dilative state of the sliding mass, 

characterized by a dilation angle Ψ > 0. In this condition, the shear displacement vector 

at the base of each slice forms an angle Ψ with the slice base. Figure 1.6.3(b) presents 

a corresponding hodograph for the Ψ > 0 case. It reveals that shear displacements along 

the potential sliding surface progressively increase toward the toe of the slope when 

dilation is present. 
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Figure 1.6.4 A constant-volume (Ψ< 0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  

 

 

Figure 1.6.4(a) schematically shows the case of dilation (or expansion) of the 

sliding mass, namely Ψ< 0, the vector of shear displacement at the base of the slice has 

an angle of dilation (Ψ) with the base of slice. A hodograph for the case of Ψ< 0 is 

shown in Fig. 1.6.4(b).  
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1.7 DISPLACEMENT INCREMENT 

To evaluate slope displacements resulting from changes in external or internal 

conditions—such as loading, variations in the water table, or pore water pressure—two 

displacement values for each slice (Δᵢ) are calculated: one representing the state prior 

to the event  a
i  and the other representing the state afterward  b

i  . The 

displacement increments for slice i, induced by the change in stress conditions, is 

schematically illustrated in Figure 1.7.1 and defined as: 

 

∆௜= ∆௜
௕ − ∆௜

௔                                                                                         (1 − 7 − 1)   

 

 

 

Fig. 1.7.1 Possible shear stress and displacement increases induced by a 

coupled shear and confining stress increases 
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